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Various inequalities are derived and used for the study of the critical behavior in 
independent percolation models. In particular, we consider the critical exponent 
7 associated with the expected cluster size X, and the structure of the n-site 
connection probabilities �9 = %(xl , . . . ,  xn). It is shown that quite generally 
7 ~ 1. The upper critical dimension, above which u attains the Bethe lattice 
value 1, is characterized both in terms of the geometry of incipient clusters and a 
diagramatic convergence condition. For homogeneous d-dimensional lattices 
with r(x, y)= O(Ix-  yl-(a-2+,ll), a tp  =Pc, our criterion shows that 7 = 1 if 
T/> ( 6 -  d)/3. The connectivity functions %, are generally bounded by tree 
diagrams which involve the two-point function. We conjecture that above the 
critical dimension the asymptotic behavior of %, in the critical regime, is 
actually given by such tree diagrams modified by a nonsingular vertex factor. 
Other results deal with the exponential decay of the cluster-size distribution and 
the function r2(x, y). 

KEY WORDS: Percolation; critical exponents; correlation functions; con- 
nectivity inequalities; upper critical dimension; cluster size distribution; 
rigorous results. 

1. INTRODUCTION 

Percolation is the phenomenon of formation of infinite connected clusters 
in a system of random geometric objects, which may, for example, be the 
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set of "conducting" lattice bonds, or the set of "occupied" sites on a regular 
lattice. Even if the basic local variables are non-interacting, i.e., are 
independently distributed, globally the system may exhibit a transition (as a 
density parameter p is varied) from a nonpercolating phase to a percolating 
phase. 

As with other phase transitions, one expects the critical behavior to be 
mostly affected by the dimension of the lattice. It is well understood that 
(for finite-range systems) there is a lower critical dimension, here d = 1, only 
above which the phase transition occurs at a regular value of p (that is, 
p v ~ 1). Furthermore, it is expected that there is also an upper critical 
dimension, above which the critical behavior takes a very simple form. The 
renormalization group approach offers an appealing picture of this behav- 
ior in which it is argued that the fixed point (in some very large space) 
towards which a critical system is driven by scaling is rather simple in high 
dimensions. It has been argued that for percolation the upper critical 
dimension is d = 6. However, so far very little has been achieved in the 
direction of providing rigorous arguments to support, and explain, these 
predictions. The results which are presented here offer a step in this 
direction. 

Our analysis is inspired by the arguments which were developed in 
Ref. 1, where a similar problem was solved for Ising systems and ~4 fields 
(where the upper critical dimension is 4). We have been informed that some 
of the inequalities which are derived and used here have been also found by 
J. Fr6hlich, (2) whose work (3) provides a somewhat parallel analysis to Ref. 
1. Some of our results are reviewed in Ref. 4. 

The basic quantities which we consider are the n-site connectivity 
functions ~-(x l, . . . ,  x,) (=  %), which are defined (in Sections 2 and 4) as 
the probabilities that the n sites are all connected. The sum 

X = Er(O, x) (1.1) 
x 

is the expected value of the size of the cluster, C(0), of sites which are 
connected to the origin 0. Higher moments of the cluster size, I C(0)I, are 
similarly expressed as sums (with one site fixed) of %'s, for n > 2. 

The quantity X, which is a monotone increasing function of the density 
p of the connecting bonds, diverges at a critical value.pc (denoted as Pr and 
% in Refs. 5 and 13). We present some general results about the critical 
behavior of X, and discuss the critical exponent y defined by 

X ~ (Pc - P ) - r  (in some appropriate sense), as pTpc (1.2) 

Our main results fall into two classes: 
(i) Bounds on various quantities of interest (including.pc, Y, X, % and 



Tree Graph Inequalities 109 

the correlation length ~) which hold for general homogeneous lattices. Some 
of these are essentially satisfied as equalities for approximating Bethe lattice 
models. 

(ii) Some heuristic geometric ideas and a rigorous diagrammatic 
convergence criterion for the upper critical dimension. Above this dimen- 
sion the critical behavior of both X and the functions % simplifies consider- 
ably; ), = 1 and we conjecture that the structure of % is actually well 
described by the bounds mentioned above (up to corrections by factors 
which are regular at Pc). 

Most of the results apply to general homogeneous (i.e., translation 
invariant) percolation models, in which various bonds may be occupied, or 
connecting, with probabilities which, for convenience, depend monotoni- 
cally on a single parameter B. This general setup is introduced in Section 2. 
Some of the main results are listed below. 

1. A proof that in the general case of homogeneous, independent, 
bond percolation models the cluster size, X(fi), actually diverges as ill'tic 
(Section 3). For finite-range models this also implies that limB~/~fl(p)= ce 
(~ the correlation length). 

For finite-range models this result could have also been proven by 
means of an inequality (see Section 5.2) fashion after the Simon-Lieb 
inequality (6'7) for ferromagnetic spin systems. However, the argument pre- 
sented here offers a simpler treatment, which can be applied to those 
systems as well. Furthermore, this "continuity" of X holds even for long- 
range models, in which the infinite cluster density may be discontinuous. (s) 

2. A proof that the Bethe lattice approximation (described in Section 
2.2) provides, quite generally, bounds not only for the critical density 
(which was known) but also for the critical exponent ~,. Specifically, 

/3 C/> fl~.L. (orp c >/p~.e. for models with a single densityp) (1.3) 

and 

7 /> 1 (=  ~,B.L.) (1.4) 

Both statements follow from a single upper bound on ](d/dfi)X(fi)-11 

- 1  

[or I(d/dp)x(p)-11, where appropriate], which by integration yields upper 
and lower bounds on X (Section 3). For example, for the standard model on 
Z d, with only the nearest-neighbor bonds being occupied with probability p, 
the resulting bounds are: 
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[For a related quantity ;~ (~< X) one can replace (2d) in (1.5) by ( 2 d -  1), 
which is associated with a slightly better Bethe lattice approximation.] 

3. Upper bounds for the connectivity functions % in terms of func- 
tions of lower order (Section 4). The ultimate reduction states that 
%(x~ . . . .  , xn) is bounded by the sum of products of the two-point func- 
tion which correspond to all the tree diagrams having x ~ , . . . ,  x n as 
external vertices, and valence 3 at the internal vertices. The simplest such 
bound is 

"r3(x , ,x 2 ,x3) < ~ T(x 1 , y)~'(x a , y)~'(x 3 , y) (1.6) 
y 

(for any independent bond percolation model). 
4. General exponential bounds on the cluster size distribution, for 

any fl < Bc (of p < Pc). Specifically, 

Prob(]C(0)[ > k) <~ (e /k) l /2e  -k/(2xb (1.7) 

for k/> X 2 (Section 5.1). The derivation of and the constants in (1.7) 
improve previous results of Kesten. (~3) Moreover the bound (1.7) holds 
even for long-range percolation models, including those for which r(x, y) 
does not decay exponentially. 

5. Exponential bounds for the two-point function for finite-range 
models, in which the connecting bonds are of bounded length. For the 
standard nearest-neighbor model on 7/d we get 

"r(x, y) < (1 - X-1)/Ix-Yll ~< e -Hx-yll/x (1.8) 

= 2 , = l [ X , I .  where Llxll d 
For the proof of (1.8) we derive an analog of the Simon inequality 

(with Leib's improvement). The validity of this inequality for percolation 
models has been realized by a number of people--see Section 5.2. How- 
ever, the bound (1.8) represents a slight improvement in the application of 
such inequalities. 

6. A criterion for the upper-critical dimension. An explicit formula 
for Idx-~/dpl  (Section 3.2) shows that the critical behavior of X simplifies 
considerably in dimensions in which the probability of neighboring "in- 
cipient clusters" to intersect is less than one (uniformly as p?p~). In such 
models the critical exponent 3' attains the Bethe-lattice value: 

3  ̀ = 1 ( =  yB.L.) (1.9) 

in the strong sense that X(P) is bounded both above and below by 
expressions of the form const ]Pc - p ] + l .  As a concrete criterion, we prove 
(in Section 6) that in finite-range models (1.9) is indeed satisfied if the 
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"triangle diagram": 

V = ~, "r(O,x)'r(x, y)'c(y, 0) (1.10) 
x,y 

is finite at p =Pc (or, uniformly bounded fo rp  < Pc). 
The above criterion is reminiscent of an analogous yet significantly 

different statement which holds for the magnetic susceptibility in a class of 
ferromagnetic spin systems. In the latter case, the sufficiency criterion for 
the analog of (1.9) (derived in Ref. 1, and extended to the critical dimen- 
sion d = 4 in Ref. 9) is the finiteness at/3 =/3c of the bubble diagram 

B = 2 S(O,x)S(x, 0) (1.11) 
x 

where S(0, x) is the spin correlation function. 
For a simple comparison of the two criteria, let us rewrite the quanti- 

ties, for the case of a cubic lattice Z a, in terms of the Fourier transform: 

f ( k )  = ~ f(O,x)e '(~'~) (1.12) 
x~Z a 

One gets 

while 

V - -  1 ( dk~(k)3  (1:13) 
(2~r) d a[-~,~V 

~[ A 2 
B - 1 akS(k)  (1.14) 

It is known (by the "reflection positivity" argument of Ref. 10) that the 
spin correlation function, in ferromagnetic spin systems with nearest- 
neighbor interactions, satisfies 

(0~<) S(k)~< Pi= (2sin ~ - ~  f o r k < < l  (1.15) 

for all fl < fie" Thus the above criterion with B is met in dimensions d > 4. 
Were the analog of (1.15) to hold for ~(k), our criterion would show that 
y = 1 in any dimension above d - -  6. 

One may find in the above results a tenuous support for the notion 
that the upper critical dimension for percolation is d = 6. (11) However, the 
analog of (1.15) is expected to be invalid for ~(k) in some dimensions below 
6.(12) Thus, our results only prove that u = 1 in a particular dimension d if 
the critical exponent 7, defined by: ~ ( k ) ~  cons t /k  2-~ (at p = Pc), satisfies: 

~/>(6 - d) /3  (1.16) 
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7. We expect the simplification in the critical behavior, above the 
upper critical dimension to show not only in the critical exponents, but also 
in the structure of the connectivity functions %. For reasons mentioned in 
Section 4.1 we conjecture there that the latter reduce, asymptotically, to 
combinations of the two-point function--given by the tree diagrams, with 
some nonsingular vertex factor 0 < G < 1. 

Other technically useful results not mentioned above, include a general 
positivity statement for ~(k) (Section 3.2) and the difference inequalities for 
% of Sections 4.2 and 5.2. 

In most of the paper we refer to bond percolation models. However, 
the analysis has a natural extension to site percolation, which is briefly 
reviewed in Section 7. 

2. BOND PERCOLATION MODELS 

(ii) 
in b, i.e., 

2.1. The Model 

We consider here quite general independent (Bernoulli) bond percola- 
tion models, paying special attention to systems on homogeneous (i.e., 
translation invariant) lattices. (Site percolation models are discussed in 
Section 7.) 

The lattice is a countable set of sites, denoted by 1_, with a group of 
isomorphisms (translations T : 1_ ~ l_) which acts transitively on k We refer 
to pairs of sites as bonds, b = {x, y}, and assign to each bond a random 
variable, n b = 0 or 1. The variables {n b} are jointly independent, with the 
probabilities 

Prob(% = 1) = Kb(13) (2.1) 

which depend on the parameter fi E [0, ~) ,  and have the properties listed 
below. 

(i) Homogeneity (when stated): 

K( Tx,ry)(/~ ) = K{ x,y)(/3 ) (2.2) 

The functions Kb(/3) are nondecreasing in/3, and locally summable 

where 

sup/Tx(/~ ) < ~ (2.3) 

Rx(~8 ) = ~ Kb(fl ) (2.4) 
b ~ x  

(In the homogeneous case, the subscript x in K x will often be omitted.) 
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(iii) 
and Kx(fi) are differentiable functions with 

and 

With no further loss of generality, we also assume that Kb(/3) 

Kb(0 ) = 0 for all the bonds b (2.5) 

m 

dKx(B)_ dKb(fi) 
b ~ x ~  ~< C < m  (2.6) 

for al lf l  >O, a n d x E n .  

that 
While the following condition will not be used, it may also be assumed 

sup lira K b( B) = I 
b f l ~  

For a given configuration of values of { n b }, we regard each bond with 
n b = 1 as occupied, or connecting, and partition the lattice into connected 
components. 

An important, and standard, example is k = 7# (the d-dimensional 
cubic lattice) with only the nearest-neighbor connections, i.e., 

I p(/3 )' [ x - Yl = 1 K(x.y~( B ) (2.7) / 

( 0, otherwise 

The natural parameter for such models is, of course, p E [0, 1] itself. 
Denoting by C(x) the (n-dependent) connected cluster containing the 

site x E l_, we define 

~-(x, y)  = Prob(y  ~ C(x))  [ ~- Prob(C(x)  = C(y ) ) ]  (2.8) 

and 

X = ~, r(O,x) (2.9) 
xE~_ 

Thus r(x,  y) is the probability that x and y are connected. Further- 
more, X = X(fi) is the expectation value of the cluster size: 

X = <[C(0)[> (2.10) 

where [C] is the number of points in the cluster. 

Remark. In order to explain the relation (2.10) it is useful to intro- 
duce the indicator functions (of {nb} ) 

1, if x ~ C ( 0 )  
i[x C(0)I= 0, if x C(0) (2.11) 

One gets 

"r(O,x) = <I[ x ~ C(O) ]> (2.12) 
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and thus 

x= 2 <,Ex c(o)l>= (2,Ex 
x 
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c(o)])  = <tc(o)l> (2.13) 

It is well known that the nearest-neighbor models on 7/d, d > 2 (and 
models dominating those) exhibit a phase transition, at which X(fi) (which 
is a nondecreasing function of fl) diverges. 

One of the main questions addressed in this paper is the value of the 
critical exponent 

log x(/~ ) 
y = - lim inf (2.14) 

Be'/~c log( tic - fl ) 

which characterizes the critical behavior (X(fl) ~-( tic - f l )-r)  in the vicin- 
ity of the critical point: 

tic = sup{ f i lX( f i )  < ~c} (2.15) 

def /~ 
Remark. Pc = P ( c )  iSpr, or %, in the notation of Refs. 5 and 13. It 

has not yet been rigorously proven, except for d - - 2 ,  that tic is also the 
percolation threshold, where infinite clusters first appear. 

2.2. The Bethe Lattice Approximation 

When pressed for a quick estimate of Pc and the critical exponent y, 
one is tempted to reduce the complexity of the problem and consider an 
analogous model on a Bethe lattice. While this is a very simplistic treatment 
of a nontrivial effect, we shall demonstrate that the values which it yields 
form, in fact, rigorous lower bounds. 

In this "approximation," the nearest-neighbor bond percolation model 
on 7/a is replaced by percolation on the Cayley tree on which each site has 
2d neighbors. The probability that a site x is connected to 0 is pdist(O,x). The 
removal of one of the bonds which connect to 0 splits the tree into the 
"top" part, which may still be connected to 0, and the "root system." 
Denoting by X r the quantity X defined for the top only, one readily obtains 

09 

X r =  2 ( 2 d -  1)~ k (2.16) 
k = 0  

and 

X = (1 + p ) x  r (2.17) 
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Thus, 

l + f l  1 
X ( p ) -  ( 2 d -  l) Ipc g_pl   L (2.18) 

with the critical probability, and the critical exponent 

py.L.= ( 2 d -  1) ', 7 B'L'= 1 (2.19) 

On the tree used in the above approximation, the set of links con- 
nected to each vertex is isomorphic to, and can be labeled by, the set 
B = { b ~ OIKb( ' )~  0} of the relevant bonds of the lattice L which contain 
0. Such a construction can be extended to the more general case, described 
by (2.1). However, a mild complication arises from the fact that the links 
along any "ascending path" are constrained not to have certain pairs of 
labels in succession. The calculation is less tedious if one replaces this tree 
with one where the constraint is removed. In this approximation, which we 
denote by an asterisk, one gets 

- I  

X * ( f i ) = [ 1 -  K ( f i ) ]  (2.20) 

which diverges at fi*, where ~b~oKb(t~ *) = 1. Furthermore, for fi ~ fi*, 

d •( fi 1 (2.21) 
x * ( B )  I - BI'+ 

i.e., the critical exponent 7 is still 1. 
In the next section we prove, by means of a single differential inequal- 

ity, that the above simple calculation leads to rigorous bounds for both tic 
and the critical exponent 7. However, since the first statement is in fact an 
older, and commonly made observation, let us present it here. 

Proposition 2.1. The critical point [defined by (2.15)] for the bond 
percolation model (2.1) satisfies 

tic > fi* (2.22) 

Furthermore, for the nearest-neighbor model on 7/d, 

1 
Pc > 2d---TT (2.23) 

[which is an improvement since p( /3*)=  1/2d]. 

Proos If x E Zd is connected to 0 then there is a self-avoiding path 
(along the bonds of the lattice) which connects the two sites, all of whose 
bonds are occupied. The probability of such an event equals the probability 
that the site on the tree described above, which corresponds to the given 
path, is connected there to the origin. The summation over such events 
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leads to the upper bounds 

X( /3) <<- XBL(/3) ~< X*( /3) (2.24) 

which imply the corresponding inequalities among the critical points. [] 

Remarks. (i) It is clear from the above argument that the bounds 
(2.22)-(2.24) can be improved, by a better count of the self-avoiding paths. 
An estimate of this type was used by M. Fisher, in his derivation of the 
mean-field upper bound for the critical temperature in Ising models. (14) 

(ii) It might be pointed out that the bound (2.24) does not provide us 
with any information on the critical exponent 7, since actually/3r ~/3~.L.. 
Nevertheless, we shall next prove that the Bethe lattice value of 7 is in fact 
a lower bound. 

3. RIGOROUS RESULTS ON THE CRITICAL BEHAVIOR OF X 

An interesting feature of the Bethe lattice approximation is that 7 BL 
has the "universal" value 1, which is independent of the details of the 
model, including the value of d. The numerical evidence is that in low 
dimensions (e.g., d = 2) this value is not correct. However it is expected that 
a strict equality 7 = 7 BL holds above an upper critical dimension (d = 6?). 
We shall now prove that 1 is in general a lower bound for 7, and derive a 
criterion for the upper critical dimension. 

3.1. A Lower Bound for 7 

Proposition 3.1. In any homogeneous (independent) bond percola- 
tion model the critical exponent 7, defined by (2.14), satisfies 

7 > 1 (3.1) 

Furthermore, for/3 </3c, 

X(/3) >[K(/3r  - R ' ( f l ) ] -~  (3.2) 

The above bounds are derived from the following differential inequal- 
ity for X(/3)- 1. 

L e m m a  3.1. The quanti ty 2(/3) -1 is continuous at /3~ [i.e., 
lim~cX(/3) = oc], and satisfies 

( 0 < )  - ~ X ( / 3 ) - ' < ~ f ( / 3 )  for fl</3r (3.3) 

[The derivative (d/d/3)X- 1 is interpreted here in the weak sense. The results 
of Section 5.1 imply that for the nearest-neighbor model on •d,X(p) is in 
fact real analytic for p ~ (0, Pc).] 



Tree Graph Inequalities 117 

x-I(B) 
�9 m ~K(B) , ,  

o B* Be O 
Fig. 1. Schematic graph of the function X(fl) -I. The finiteness of the slope implies y/> 1. 
~, > 1 is possible only if the slope vanishes at tic. That has an implication about the geometry 
of the incipient cluster, which is discussed in Section 3.2. 

Before proving the lemma, let us present its application. 

Proof of Proposition 3.1. The boundary values of X(fl) -1 in the 
interval [0, tic] are 

X(0 ) - '=  1 and X(fl~) - ~ = 0  (3.4) 

Thus, the integration of (3.3) from the two ends of this interval (see Fig. 1) 
yields (for fi E [0, tic)) 

1- fo~s g(,)ds<, x (~- '  <- o+ (~cd g(s)ds j p d s  
o r  

1 - g ( r  ~ x ( B ) - '  < K(B~)  - g ( P )  (3.5) 

Notice that in addition to implying the claimed (3.2), (3.5) includes also the 
X*(fl) bound of (2.24) and hence the inequality tic >/fl*. 

The bound on l' in (3.1) follows from (3.2) and (2.4). �9 
For the nearest neighbor model on 7/d, with K = 2dp, the bound (3.3) 

shows that [dx-1/dp[ < 2d. Omitting the proofs, let us remark that by 
considering a quantity which is an analog of X T, of (2.16), one can produce 
bounds which are more reminiscent of the first of the two Bethe lattice 
approximations discussed above. Defining 2 as ~x~-(0,x) in a system in 
which one of the bonds containing 0 has been "removed," one can show 
(by combining the arguments used next with some of the ideas used in 
section 4.2) that 

;~ < X < (1 + P)X (3.6) 
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and 
d2 - 1 
- - ~ p  < 2 d -  1 (3.7) 

These bounds are quite reminiscent of (2.16)-(2.18), and imply 

X(P) > ;~(P) > [ ( 2 d -  l ) [ p c - p [ + 1 - 1  (3.8) 

which is a slight improvement over (3.2). 
To prove Lemma 3.1 we shall first derive the following result for finite 

systems--without assuming the homogeneity condition (i) of Section 2. 

L e m m a  3.2. In a percolation model on a finite set L, 

Jfir(x, y) <<, ~ r(x,u)(dK{.,v}/dfl)r(v, y ) (3.9) 
u,vEE 

Proof. For a given configuration of { n b } (i.e., of connecting bonds), 
we say that the bond {u,v} is pivotal for the connection of x with y if the 
two points are connected in the configuration which is obtained from { n b ) 
by setting n{,,v} = 1, and are disconnected in the configuration obtained by 
setting n{,,v} = 0. By Russo's formula (or a simple direct argument) 

3 r(x, y) = Prob(( u, v } is pivotal for the connection of x with y)  
3K(u,v} 

(3.10) 

[where we view r(x,  y) as a function of {Kb} ]. 
We shall denote now by ~{,,V}(z), or just C(z), the cluster of sites 

which (in a given configuration {%}) are connected to z--even after n{,,~} 
is set to 0. Reexpressing the right-hand side of (3.10), we get 

3 r(x,y) = Prob(x E C ( u ) , y  E C(v)  and C(u) A C(v)  = O) 
3 K{ ,,v} 

+ a (u ~ v) permutation of  the above 

= Prob(x ~ C(u),  v ~ C(u))  

x Prob(C(v)  ~ y l x  e, v ~ C(u)) 

+ a (u e-~ v) permutation (3.11 ) 

where the last factor is a conditional probability. 
The first factor in the right-hand side of (3.11) is clearly bounded by 

r(x,u). Furthermore, the second factor is bounded by r(v, y)--since the 
specification that C{"'V}(u)= A, from some A c [_, does not affect (in the 
independent model) the distribution of the bond variables of ~_\A. (This 
point is made more explicit in Section 4.2.) 
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Hence 

~K(~,v} 

and therefore 

d r(x, y) 1 
dfi = ~ 

0 r (x ,y )  << r(x,u)'r(v,y) + ~c(x,v)r(u,y) (3.12) 

d /3)] Ta K~,~( 5-f~,v~ ~(x,y) 

.< ~ ~(x ,u)~K~.v/ /3)~(v ,y)  I (3.13) 
u ,v~L 

We shall now use (3.9) to prove the main lemma, which deals with 
homogeneous (infinite) systems. 

Proof of Lemma 3.1. Since X = ~xr(O,x), the bound (3.3) may be 
derived directly from (3.9). However, this argument still leaves the possibil- 
ity of a jump discontinuity of X(/3) -1 at tic. [X(/3) -I = 0 in (tic, oo), by the 
definition of Br and the monotonicity of X(/3).] We shall therefore be more 
careful. 

Let (0} c A1 c A 2 C �9 �9 �9 C 1_ be a sequence of finite subsets of D_, with 
i_J,~=0A, = L. Denoting by r"(x,y)  the probability that x and y are 
connected in A~ (i.e., by the occupied bonds whose both ends are in A,), 
we define 

2~ = sup ~ r~(x,y)  (3.14) 
x ~ A ~  y E A  n 

Clearly 

X ( f i ) > X , ( / 3 ) >  ~ r"(0, y) (3.15) 
yEAn  

By the bounded convergence theorem r"(0, y) 7 r(0, y), and thus X,(fl) 
7x(/3), or ~ 

lirn )~,,(fi) 1= X(fl)-I (3.16) 

It is easy to see that the functions 2,(/3), which refer to finite systems, 
are piecewise differentiable in ft. Using (3.9) we get 

d 2 . ( , 8 ) <  sup d ~ r " ( x , y )  

sup 2 ~-~(~,u) V&..~( /3 ) ~~ 
xCAn u,v,vEA n 
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An efficient way to write (3.17) is as follows: 

d L ( / 3 ) - '  < ~ K ( / 3 )  (3.18) 
d/3 

The uniform bound (3.18), and (3.16) imply both the continuity of 
X(f l ) - l  and (3.3) [i.e., (3.18), in the weak form, for the limiting function]. 

[] 
The results and the arguments of Section 5 show that in a large class of 

percolation models, for each fi < tic, there is a finite correlation length 
~(fl) E (0, oo) with which 

~-(x, y)  < e-lx-yl/~ (3.19) 

where I x - y l  is a T-invariant metric on L. Proposition 3.1 has the following 
important consequence. 

Corollary 3.1. If (3.19) is satisfied, for/3 < fl~, on an infinite lattice 
0_, with a metric for which ~,xeo_e -Ixl" < oo VE > O, then 

lim 4(/3 ) = oc (3.20) 
flTfl~ 

Remark. The arguments introduced in the proof of Lemma 3.1 
provide also a simple (the "simplest"?) way to prove the vanishing of the 
"mass-gap" (m = ~ -1) in Ising models, and other ferromagnetic systems-- 
for which the analog of Lemma 3.1 holds by the Lebowitz inequality. 

3.2. Discussion of the Upper-Critical Dimension 

In the previous discussion we found it useful to consider the quan- 
tity X(B) -1. In particular, the Bethe lattice law, X(fl) ~= c/(/3, - /3 ) ,  can 
be simply characterized by the nonvanishing of the quantity (d/d~3) 
X(fl)-11~c-o. The formula (3.11) leads to the following exact expression for 
the derivative of X(/3)-1 in homogeneous systems: 

d K'(/3) x(/3)- 

u,x,y ~Q_[ dK(o.u} /d/31Pr~ (0,u)(0) ~ x, C (0,~)(u) ~ y, 

and C(~ C) C(~ = O) 

~],.x,y~Q_[ dK(o,u)/dfllProb(C(O ) ~ x)Prob(C(u) ~ y)) (3.21) 

The summation over u in (3.21) is effectively restricted to sites near 0, 
whereas the region over which the x, y sum is significant for the denomina- 
tor diverges as fi1"/3c. Furthermore, as we saw in (3.11), (3.12), each term in 
the numerator is bounded by the corresponding term in the denominator. A 
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brief contemplation of the ratio of corresponding terms, reveals that the 
vanishing of dx(fi)-l/dfl]~c would be closely related with the inability of 
two large ("incipient") clusters, which reach close sites (0, u), to avoid each 
other. For comparison, let us mention that the probability that the paths 
generated by two independent random walks on Z d avoid each other, 
vanishes only up to d = 4 dimensions. The incipient clusters, whose struc- 
ture we are in effect probing in the next section, do not look like random 
walk paths. However, it is not unreasonable to expect that the incipient 
clusters have a canonical (i.e., d-independent) structure which is unfolded 
over a_, provided the dimension of ~_ is large enough. 

The above picture suggests that for sufficiently high-dimensional l_, 

I dx-' 
(Be - o) 0 (3.22) 

in which case one has a strict equality: 

~, = 1 (3.23) 

The analysis of the next section leads to the following criterion, which is 
proven in Section 6. 

Proposi t ion 3.2. (3.22) and (3.23) are satisfied (the former in the 
sense of lira inf/~Tp ) for the standard model of 71 a in any dimension at which 

V~'r(O,x) 'c (x ,y )z (y ,O)  < ~ at fi = tic (3.24) 
x ,y  

(or, equivalently, V is uniformly bounded for fl < fi~). 
It is interesting to note that an analogous, yet significantly different 

result holds for the Ising model, and other ferromagnetic spin systems--for 
which the criterion for the magnetic susceptibility exponent 7 to be 1 is the 
finiteness of the "bubble diagram": 

B = Z S ( 0 , x ) 2 <  ~ at fl = tic (3.25) 
X 

where S is the pair correlation function. (''9~ (There are also similarities in 
terms of the geometric picture described above.) 

The two criteria were compared, and contrasted, in the introduction, 
with the help of the Fourier-transform representations (1.12)-(1.14). For 
these, and other considerations (e.g., in Section 6) it is useful to note that 
r is positive, by the following general argument. 

Lemma 3.3. The function ~-(x, y) is of positive type, in any percola- 
tion model (i.e., not even a necessarily independent one). In particular, for 
a translation-invariant model on 2U, 

~(k)/> 0 (3.26) 
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ProoL For any summable function f:n_ ~ C, 

2 f(x)'r(x, y)f(y) = ( 2 f (x) I [  x & y are c o n n e c t e d j f ( y ) )  
x , y ~ L  \ x,y 1 

= f(x) 0 (3.27) 

where the first sum on the right-hand side is over the set of (random) 
clusters and ( ) denotes the expectation value. 

(3.27) implies the stated positivity. Furthermore, via standard argu- 
ments it yields the following intriguing representation for ?(k), at/3 </3c : 

4 ( k ) =  ~ Prob(C(O)= A) [A] -1/2 E ei(~'~)2 (3.28) 
A c Z  d x ~ A  

where IA[ denotes the cardinality of A. II 
The analogy with spin systems seems to stop here. The important 

bound (1.15), whose consequences (and "would be" consequences) were 
discussed above, has no known analog in percolation models. Furthermore, 
there are certain indications that in some low dimensions r  
constk -(2-n) with a negative ~1, i.e., the simple analog of (1.15) fails. (~2) 
(We thank J. Adler, A. B. Harris, and Y. Shapir for bringing this to our 
attention.) With the above definition of the critical exponent ~/we can say 
that, in any dimension, ~ > (6 - d)/3 implies 7 = 1. 

4. TREE GRAPH BOUNDS FOR THE CONNECTIVITY FUNCTIONS 

4.1. Description of the Main Result 

The previous discussion focussed on the behavior of the two-point 
function ~-(x, y) (=  "rz(X, y)) in the critical regime. However, in addition to 
that one would like to understand also the structure of the higher connec- 
tivity functions, which are defined as follows: 

%(x I . . . . .  xn) = Prob(x 1 . . . . .  x, all belong to the same 

connected cluster) (4.1) 

The functions % contain further (in fact, all the) information about the 
structure of the connected clusters. In particular, the moments of I C(0)[ are 
given by 

<lc(o)l"> = ( 

XI, 

x nl[ X C(~ ] ) ") 

�9 . , X n @ f l -  

(4.2) 
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The main results of this section are the "tree diagram bounds," 
introduced below, for which ~_ need not be homogeneous (nor infinite). 
First let us define the following functions. 

Definition. For any n > 2 and x 1 . . . . .  x n E ~_, 

r , (x , , . . . ,xn)=2  II (4.3) 
G Yl . . . . .  y . - z ~ L  {z,z'}E•(a) 

where the s u m ~  1 is over all the connected tree graphs (i.e., with no loops) 
whose vertex set is the set of variables {xj . . . .  , x n , Y l  . . . .  ,Y,-2}, such 
that the number  of edges to which a vertex belongs is exactly one for the 
"external" vertices {x I . . . .  , xn}, and three for the "internal" vertices 
{Yl, - . �9 , Y,,-zJ.' ~ • (G)  is the set of edges, which are identified in the above 
expression with the corresponding pairs of (possibly equal) sites of Q_. 

To remove the redundancy which will be associated with coincident 
points (whose contribution is actually negligible as/3?tic ) let us also denote 

T/ , (x ,  . . . . .  x,,) = Z ,~2 ]'I T(z , z ' )  (4.4) 
Vc~_\{x~ . . . . .  x,} C {z,z'}EG(G) 

IVl~<,,-2 
where the sum ~22 is over all the connected tree graphs on the vertex set 
(x~ . . . .  , x n } U V such that each of the vertices, y E V, belongs to at least 
three edges and each of the vertices x i belongs to at least one edge. 

Proposition 4.1. In any independent percolation model 

"c3(x , , x  2 , x3)  <~ ~ . ~ c ( y , x , ) . r ( y ,  x z ) ~ ( y ,  x3) (4.5) 
y 

and, more generally, 

% ( x ,  . . . .  , x~) <~ T , ( x ~  . . . . .  x , )  (4.6) 

[It is clear from the proof of Lemma 4.1 that T, could be replaced, in 
(4.6), by r,~ (~< T,).] 

Before proving the proposition let us present some heuristic ideas 
about the structure which emerges here. 

The bounds (4.5), (4.6) are made somewhat intuitive by considering 
first the low-/~ limit, in which the bond occupation probabilities are very 
small. In this case, the main contribution to % is from the "minimal" 
configurations of bonds which interconnect x ~ , . . . ,  x~. Such configura- 
tions correspond to the dominating terms in the sum T,. For noncoincident 
points one has lim/~_~0%(x 1 . . . . .  x ~ ) / T , ( x l , . . . ,  x~) = 1. 

For higher values of /9, a similar description should still be correct 
(below /?c), if applied to intermediate size clusters--provided the " i n -  
teraction" between such "neighboring" clusters is not singular, i.e., the 
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probability of intersection is not 1. We expect that to be the case above the 
upper critical dimension discussed in the preceding section. 

The above considerations, and the proof of (4.6), lead us to the 
following conjecture, for which we choose as a concrete criterion the 
behavior of the quantity: 

Y =  • z3(0, x I,x2) [ <~ X 3, by (4.5)] (4.7) 
xI,X2EL 

Conjecture. If for a percolation model on 7/d, with K~ x.y} ( ' )  of finite 
range, the ratio Y//X 3 has nonvanishing limit: 

def Y ( f l )  
G = lira - -  > 0 (4.8) 

x(/?) 3 

then, for any (noncoincident) x I . . . . .  x n E Zd, 

�9 n ( x l L . . . ,  x f) 
lim = G "-a (4.9) 

where ~" can be any function of/~ which diverges when/~7'flc. In (4.9) x~ 
should be interpreted as the closest site in Z a to the given point. 

We expect that the method of Section 6 can be used to show that in 
systems in which the high dimensionality criterion (3.24), of Proposition 
3.2, is met, there is also a lower bound of the form % / T ,  >1 (~n-2 with 
8 > 0 .  

When (4.9) holds, the higher connectivity functions reduce to simple 
combinations of the two-point function--given by tree diagrams with 
vertices of order 3, and vertex strength G. These diagrams have the 
appearance of the tree diagrams of a @ field theory. A relation between 
percolation and the @ field theory has indeed been expected, on the basis 
of arguments (see Ref. 15), which we find far less compelling than even the 
above heuristic discussion. 

Other implications of (4.6) are discussed in Section 5.1. Let us now 
turn to the proof. 

4.2. Proof and Some Other Useful Inequalities 

In our derivations of various inequalities a key role is played by certain 
random subsets of 0_ [an example of which is C(Xl) ] with a locality property 
analogous to the nonanticipating property possessed by "stopping times" in 
the classical theory of random walks, Markov processes, and martingales. 
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Since various examples of such random sets have been previously employed 
in the study of percolation and related problems, it is useful to formalize 
their general structure. We consequently offer the following definitions. 

Definition. (a) A set valued function S((nb) ) C []- is a random subset 
of I_, if for each finite A C ~_ the indicator function I[S({%}) c A] is a 
measurable function of {n b }. [If this part of the definition causes pain, one 
need not worry--we shall not see here nonmeasurable functions of (nb). ] 

(b) S, a random subset of ]_, is said to be self-determined, if for each 
nonrandom A c D_ (possibly infinite), the event { S c A } is determined by 
the values of (n b) for those bonds which have at least one end point in A 
(i.e., { S c A ) is in the o-field generated by the above described Set of bond 
variables). 

In the last statement we could also refer directly to the events {S 
= A }, however for infinite sets A such statements require a proper interpre- 
tation. 

Our use of self-determined sets is based on the fact that for indepen- 
dent percolation the conditional distribution of the occupation variables, 
conditioned on (S  = A}, remains unchanged for the bonds which are 
external to A. An application is seen in the result presented next, which, in 
addition to being used in the proof of Proposition 4.1, is also of indepen- 
dent interest (see Section 5). 

Definition. We say that a set V c ]_ is connected in A, a subset of []_, 

if V is connected by the set of those occupied bonds whose end points lie 
(both) in A. The probability of such an event is denoted by .rA(V ). In 
particular, %(V)  = 0 unless V c A, and t 

def 
�9 ( v )  = = . . . .  , x . )  

for V =  {x I . . . . .  x,). 

Proposition 4.2. Let A C A C ~ .  Then for every V =  (xj . . . . .  xn} 
C0_ 

0 <. ~t\A(V)-- ~\i(V) < ~ ~ ~(W U (y)),((VkW) U (y)) 
y~\A x t @ W c V  

JwI<pvJ 

(4.10) 

Proof ,  It suffices to prove (4.10) for ]A\A[ = 1, and In-] < oo. The 
general case follows by a simple telescopic decomposition of ~-~_\~ - z~_\~- 

associated with an interpolating sequence A = A 0 C A l c A 2 c �9 �9 �9 c A-, 
with IAi+ ~\Ai( = 1. The result extends to infinite ~- by a simple continuity 
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argument. However, it should be pointed out that with a proper introduc- 
tion, the following argument applies also directly to infinite systems. 

Thus, we assume that A = A U {y).  Let S be the random set of sites 
which are connected to x 1 in k\A-. It is easy to see that 

�9 ( v )  - 

= <I[ V is connected in L\A ]> - <I[ V is connected in t\%]> 
= <I[ V is connected in L\A but not in k \ . d ] )  

= E < I [ S N V = W ]  
xI~WSV 

• I[  at least one of the bonds between y and S is occupied ] 

•  U (y} is connected in k\(A U S)]> (4.11) 

The random set S is clearly self-determined. Conditioning on those bonds 
which "touch" S, we obtain 

= ~] ( I [  S n V = W] I[ y is directly connected to S] 
xl~W~V 

x w )  u (y))> 

<~ ~, T(W U {y))$((V\W) U {y}) (4.12) 
xIEWSV 

As explained above, this proves (4.10). �9 
As a final prelude to Proposition 4.1, let us present the following 

somewhat stronger statement. 

Lemma 4.1. In any independent bond percolation model 

�9 ( { X l , . . . , x , } ) - < < ~  ~ ~ ( x l , y y ( W U  {y}) 
Y x2~W~{x2 . . . . .  x,) 

X ' r ( ( { x2 , . . . ,  x,,}\W) U {y ) )  (4.13) 

Proof. By simple "logic," 

~-({x, . . . .  ,xn)) 

= <I[ {x I ,x2, . . . , Xn) is connected]> 

= <I[ {x2 . . . . .  x,} is connected] 

- I[ {x z . . . .  , x~} is connected in kXC(xl)]> 

= <T[]_({X 2 . . . . .  Xn} ) -- I-k\C(~0({X2,..., X,})> (4.14) 
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Substituting in (4.14) the bound (4.10), we obtain 

�9 ( { x , , . ,  xo)) .< <1[y u {y))  
y ~ -  x2e w~{x2 . . . . .  x~} 

Xr(({X 2 . . . .  ,xn}XW ) u  { y } ) )  

(4.15) 

which leads directly to (4.13). �9 

Remark. A direct proof, and a simple grasp, of Lemma 4.1 may be 
obtained by considering the following sequential, self-determined, decom- 
position of C(x) which is modeled after algorithmic constructions of 
percolation clusters used in Ref. 16. 

For the construction, let us first choose an arbitrary total ordering of n_ 
(e.g., a "spiral" ordering for k = 7/d). Using it, we define for each x ~ ~_, 
and a given configuration of occupied bonds: 

c,(x)  = {x} 

Cn(x) = Cn fix) tO {the "earliest" site in ~_\ C n_ fix) which shares an 

occupied bond with some site in C~_ fix)} 

for 1 < n <.< t C(x)l, and 

C~(x) = C~(x) = C(x) for n > [C(x)l 

A moment's reflection shows that (i) C,,(x) is self-determined for each 
(nonrandom) n ~ Z +  U{m},  x E~_, and (ii) C~(x)?C(x) (local conver- 
gence) as nTm. 

A direct proof  of Lemma 4.1 is obta ined by noting that if 
{ X l , . . . ,  x~} are connected then there is some 1 ,K< k < oo at which 
{x2, . . . ,  x, } ceases being connected in a_\ Ck(x ). The terms in (4.13) with 
a given y E n_ are a bound on the probability that Ck(Xl)\Ck_I(Xl)=y. 
The bound is derived as in (4.12), with S = C~_l(xj). 

Finally, let us finish the proof of the result discussed in Section 4.1. 

Proof of Proposition 4.1. Lemma 4.1 provides a bound on %, for 
n > 2, in terms of strictly lower-order connectivity functions. Repeated 
substitution of (4.13) in its right-hand side leads (in n -  3 steps) to an 
expression which involves only %. The resulting sum is easily seen to be the 
tree diagram bound claimed in (4.6). �9 

It is interesting to note that the deviations from equality in (4.5) and 
(4.6) are fully traceable to the replacement of quantities like Zt\s(.), or 
r ,( ') in the above direct proof, by r( . ) .  Implications of the observation 
were mentioned in the discussion at the beginning of this section. 
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5. EXPONENTIAL DECAY AND RELATED INEQUALITIES 

Two types of exponential decay are considered in this section. The first 
is a general result on the duster size distribution for fi < tic, valid even for 
long range percolation (e.g., of the type considered in Ref. 8). In particular, 
this result simplifies and improves a previous result of Kesten on finite- 
range percolation. (j3) The other, presented in Section 5.3, concerns im- 
proved bounds on the exponential decay of the connectivity functions r, 
for short-range systems. Some inequalities used for the latter are presented 
in Section 5.2. 

5.1, Exponential Decay in the Cluster Size Distribution 

The tree diagram bounds have the following implication. 

Proposition 5.1. Suppose, in an independent percolation model 

(5.1) X -- sup <l C(Y)I> < o0 
yen_ 

then, for every x ~ ~_ and k > X 2, 

Prob(LC(x)l > k) < (e/k)]/2e-k/(2x2) (5.2) 

Proof. The moment formula (4.2), and the bound (4.6) imply that 

<lC(x)l~> = ~ %+l(x, y l , . . .  ,y,,) <~ Nn+,X 2"-'  (5.3) 
y~ . . . . .  y~ 

where N,+ 1 is the number of tree graphs appearing in T,+ 1 . It is easy to see 
that N~+j/N~ is the number of edges in the tree graphs of T~, which is 
(2n - 3). Therefore 

N,+,  = (2n - 3)!!= (2n - 2 ) ! / [ 2 " - ' ( n  - 1)!] (5.4) 

Summing (5.3) with weights given by the corresponding power expan- 
sion, we get (with no further loss) 

(ICle "1cl) < X(1 - 2x2r) - ,/2 (5.5) 

for r < (2X 2) 1 l C I - I C ( x ) l .  
By a variant of Tchebyshev's inequality, (5.5) implies that 

Prob(IC(x)l > k) < info<lCle'lCL)/(ke'~ ) 

< k- r>0X inf (l - 2x2r)- t/2e -rk (5.6) 

which [with r = (2X 2) I _ (2k)-l] yields (5.2). �9 
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To complement the bound (5.2) let us mention that the behavior of 
Prob(oe > ]C(0)] /> k) is qualitatively different for high/3.(17'18) 

In Section 4.l a conjecture was made about the structure of the 
connectivity functions "above the upper critical dimension." For the mo- 
ments of [C(0)], the behavior which corresponds to (4.9) is 

(IC(O)l 
lim - N  ~ ~-I (5.7) 
37% X 2n-1 ~+1"~" 

It is interesting to note that if one defines a random variable W with 

Prob(W = k ) =  k Prob([C(0)] = k ) / X  (5.8) 

then (5.7) corresponds to the statement that 

lira W / X  2= GZ 2 (5.9) 

where Z is a standard normal random variable and the limit is in the sense 
of convergence in distribution. 

It can be shown that (5.7) is satisfied in any percolation model on a 
"rootless" Bethe lattice, i.e., n _ = { ( j , m ) ] j E Z + ,  m =  1 , . . . , K  j} with 
K > 1 and the usual bond structure. (This fact was also noted by Dur- 
rett (4) .) 

For systems with a finite-range function Kb(fl), (5.2) can be used to 
easily obtain exponential decay of ~-(x, y)  in the distance Hx - yll. However 
a better decay constant will be obtained in Section 5.3, by using the analog 
of the Simon-Lieb inequality which is derived next. 

5.2. Inequalities of Simon-Lieb Type 

We now turn our attention back to the two-point function ~-(x,y), 
starting with the derivation of a number of inequalities analogous to the 
Simon-Lieb correlation inequalities for Ising models. Following the discov- 
ery of the existence and usefulness of the original inequalities for ferromag- 
netic spin systems, (6'7) the existence of such inequalities for percolation 
models was realized by a number of people--including B. Souillard and 
F. Delyon, (19) A. Sokal, (2~ and J. Fr6hlich. (2) 

The first inequality is really a special case of Proposition 4.2. 

Corollary 5.1. In an independent bond percolation model 

�9 (x ,z )  - ~,A({X,Z}) <. 2 "~(x,y)~(y ,z)  (5.10) 
yEA 

for every x, z ~ L, A c [1_. 
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Note that if the set A separates the two points x, z - - in  the sense that 
any connecting path along bonds with K b v ~ 0 intersects A- - then  

�9 = 0 ( 5 . 1 1 )  

The restriction of (5.10) to such separating sets yields a direct analog of the 
Simon inequality (of Ref. 6). 

For an improvement, somewhat analogous to Lieb's, (v) let us define 

~A (X, y)  = Prob(x a n d y  are connected by a path of 

occupied bond, of which not more 

than one touches A) (5.12) 

Proposit ion 5.2. For each x, z E ~_ and A c [l_, 

~r(x,z) - ~k\A((X,Z}) < ~, "~A(x, y)"r(y,z) (5.13) 
y~A 

Proof. The proof follows the approach used in Proposition 4.2. For 
reasons mentioned there, it suffices to deal with finite systems. 

Let S be the random set 

S = {v E L ]  v is connected to x in ~_\A } (5.14) 

Then, as in (4.11), 

= ( I [x  and z are connected in Q_ but not in I_\A 1~ 

= ( I I S  ~ z] I I the re  is some poin ty  ~ A which is connected 

to z in l_\ S and which is linked to S 

by an occupied bOnd]~ 

<~ ~ (I[ y is directly connected to S]~r(y,z)) 
y~A 

= 2 .U(x,y).c(y,z) .  [] (5.15) 
y~A 

Remark. To relate ~A to the usual connectivity function, let 

k(x ,A)  = (u ~D_] there is a path from u to x which has 

not more than one bond touching A ) 

It is easy to see that 

~A (x, y)  < ~'0_(x,A)(( x, y) )  (5.16) 
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In certain situations (5.16) is not a very wasteful inequality. However, that 
is certainly not the case if the set A does not "enclose" any volume. 

Finally, let us mention that related bounds exist for the function 
~8(x, y), defined for B- -a  set of bonds, as the probability that x a n d y  are 
connected even without the bonds in B. 

One can show, by the arguments used above, that 

. r (x ,z )  - ;cB(X,Z) <-< E ~8(x ,u)K( , ,~) ( f l )~c(v ,  z)  (5.17) 
u,vEL 

( . ,v}cB 

(5.17) may be used for another proof of Lemma 3.2. We shall next see 
another application of such inequalities. 

5.3. Exponential Decay of T(0,x) 

For finite-range percolation models, the above inequality can be used 
to prove the exponential decay of z(0,x), for fl < tic, with an explicit 
estimate of the exponential decay rate (i.e., the "connectivity length"). 

In a general percolation model, let ~ be the set of "relevant" bonds: 
= (b] K b ( . ) 5 0 ) ,  and let p denote the following metric: 

p(x, y) = the minimal number of bonds in ~ needed to connect x withy 

In a homogeneous model we denote, for x E H_ : 

]Jxll = supl  - l imp(O,  T~O) Tx k ~  k is a lattice translation such that TxO = x 
L 

} 
(5.18) 

[The limit(s) exist by subadditivity.] 
For example, in the standard nearest-neighbor model on Ea 

d 

Ilxll = ~2 Ixi[, for all x = (Xl, . . . , Xd) E 77 d (5.19) 
i = 1  

The general result (which may be further extended to nonhomogenous 
cases) is 

Proposition 5.3. In any homogeneous independent bond percola- 
tion model, with X < m, 

"r(O,x) < (1 - X-')llxll < e -Ilxlj/x (5.20) 

Proof. Let 

y) 
o(O,y )  = n 
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By Corollary 5.1 with A = { y l O ( y , x ) =  n}, and (5.11) with x = 0 ,  
z = x, we have 

.r(O,x) < ~ .c(O, y ) r ( y , x )  (5.21) 
y~0_ 

o(y,x) = n 

for any x such that p(0, x)/> n. A simple iteration of this inequality (as in 
Ref. 6) shows that 

"c(O,x) <<. g[o(O,x)/,], if o(O,x) >1 n (5.22) 

where [a] >t a - 1 is the integral part of a. 
Lemma 5.1, below, implies that (5.22) can in fact be simplified into 

~< ( inf .gl/n] Ilxll, for all x ~ 2U 'r (0~ x )  (5.23) \ n>~l 

The necessary bound on inf gl/,, is provided by Lemma 5.2. �9 
We referred above to the following results. 

Lemma 5.1. For any homogeneous independent bond percolation 
model 

~-(0,x) < inf ~-(0, T~O) ilk (5.24) 
k>~0 

for any translation T~ such that Tx0 = x (in the standard models: T~0 
= k x ) .  

Proof. Given a translation Tx, with Tx0 = x, it is natural to denote 
kx  = T~O. For each integer k >/0 we have 

.c(O, kx)  >~ ~-({0,x, Zx . . . . .  k x } )  

>1 r ( O , x ) r ( x , 2 x )  . . . 7 ( (k  - 1)x, kx)  = r(0, x) * (5.25) 

where the second step is by the F K G  inequality. �9 

Lemma 5.2. 
= X < oe, we have 

For any sequence g, with go = 1, gn > 0 and ~],~=0gn 

inf (g,)l/ ,<~ 1 - X -1 (5.26) 
n > l  

Proof. If i n f n > ~ l ( g , ) l / " > l - x  -1, then g , > ( 1 - X - l )  n 
n/> 1 and thus 

g , > l +  ~ (1 - X - I ) " = X  
n=0 n= l  

which contradicts the given data. �9 

for each 

(5.27) 
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Let us conclude this section with a few remarks about percolation 
models on ?7 d. 

(1) For a nondegenerate finite range model the norm ]rx]] used above 
is equivalent to the Euclidean norm ]x[, and satisfies Ilxll >/clxJ for some 
c > 0. Typically, the connectivity (or correlation) length ~ is defined as the 
minimal value for which 

"r(O,x) <~ e -]xl/~ (5.28) 
(by Lemma 5.1, the minimum is attained). Proposition 5.3 shows that for 

flT'fic 
~/R~<E-ln(1- X ' ) ] - ' < X  (5.29) 

where R = max(lyl ] {0, y ) ~ ~ ) .  
(2) By Simon's argument, ~6~ the Lieb ~7) type improvement made in 

Proposition 5.2 leads to a proof that 

lim ~( fl ) = ~ (5.30) 

However, in Section 3 we presented an even simpler proof of (5.30) [there 
(3.20)]. 

(3) For long-range percolation models (as the one studied in Ref. 8), 
in which ~(fl) -- ~ for all fl > 0, one may "control" ~-(x, y) by combining 
the above arguments with a method used in Ref. 21--just as is done in 
Ref. 6. 

6. DERIVATION OF THE V-CRITERION 

In this section we derive the criterion for the upper critical dimension 
which was extensively discussed in the introduction and Section 3.2. With- 
out repeating the discussion we shall prove here Proposition 3.2, which may 
be rephrased as follows. 

Proposition 6.1. If, in the nearest-neighbor bond percolation model 
on Za the triangle diagram is finite at Pc, i.e., 

7(p) %f ~ "r(O,x)'c(x,y)~(y,O) < ~ at p =Pc (6.1) 
x ,y~L 

(or, equivalently, ~7 is uniformly bounded for p < Pc) then, for some 6 > 0 

dp /> 6 for all p < Pc (6.2) 

In order to simplify the presentation, let us prove separately a much 
less useful result, which shows that (6.2) holds if ~7(tic) is not just finite but 
is less than 1. 
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Lemma 6.1. In any homogeneous bond percolation model 

dx( fi )-  ~ dK ( fi ) 
d~ >~---75--[ 1 -v (~ ) ]  (6.3) 

Proof. The summation, as in (3.13), of Russo's formula (3.10) leads 
to the following expression: 

dx( fi ) J 

- ~ --~ ~(o,~)  ~ d/~ 

2 7~ K~~ (p) 
x,y,u~Q_ 

• ( I [  {0, u} is pivotal for the connection of x w i thy ] )  

(6.4) 

where we made a simple use of the translation invariance (in effect, to 
simplify later notation we replaced 0 with x in the more natural expres- 
sion). 

Denoting, as in Section 3, by C ( z ) ~  C(~ the cluster of sites 
connected to z even after the bond (0, u) is removed, we have 

( I [ (0 ,u}  is p ivo t a l . . .  1) 

+ a(x <-->y) permutation of the above (6.5) 

Applying Corollary 5.1 (or Proposition 4.2) 

�9 ~,~x)(u,  y)  = ~(u, y )  - [~(u,  y)  - ~ , ~ x ) ( U ,  y ) ]  

> , r (u , y ) -  • I[z ~ C(x)]r (u , z ) r ( z ,y )  (6.6) 
zCL 

Substituting (6.6) [where C(x) C C(x)] in (6.5) one gets 

dx( B ) 

- ~;](I[C(x) ~ O,z])r(u,z)r(z ,y)}  (6.7) 

By definition, and the tree diagram bound (4.5) 

(1[ C(x) ~ 0,z] )  = r <, ~r  (6.8) 
W 

(and, of course ( l[C(x)  ~ 0]) = r(O,x)). 
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\ 
/ 

0 =2 - 

x / y x y x y 

Fig. 2. The lower bound which is obtained by the substitution of (6.8) in (6.7). Each solid line 
represents a two-point function ~-(., .), a wiggly line stands for dK(o . ,  } ( f l ) / d f l ,  and the 
interrupted line indicates that u and v are not connected--except  possibly by the bond {0, u} 
itself. The summation is over all the vertices, except 0. (The formula may be easier to recognize 
after shifting 0 to x.) 

The substitution of (6.8) in (6.7) leads to the lower bound which is 
described in Fig. 2. Its summation is in fact quite simple, due to the 
translation invariance. The result is 

dfi X 2 1 - sup ~z(O,w)'r(w,z)'r(z,u) (6.9) 
u ~ L W , Z  

The supremum in (6.9) is attained at u = 0, by Lemma 6.2. Dividing 
(6.9) by X 2 o n e  gets (6.3). �9 

In the last step we used the following result. 

Lemma 6.2. In a homogeneous model, for every v E k 

"r(O,w)'r(w,z)'r(z,v) < ~'r(O,w)'r(w,z)'r(z,O)= V (6.!0) 
W,Z E ~- W,Z 

Proof. It follows from (3.27), of Lemma 3.3, that the quadratic form 
with the kernel 

Q(u,v)= ~ "r(u,w)'r(w,z)'r(z,v) (6.11) 
w,z @ 

is of positive type. A standard argument, based on the Schwarz inequality, 
implies that 

Q(u,v) <[  Q(u,u)Q(v,v)] '/2= Q(0,0) (6.12) 

where the last step is by the homogeneity. [For 7/d one could, alternatively, 
use the Fourier transform representation, and (3.26).] �9 
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In order to extend the main result of (6.3) to cases where V(tic) is finite 
but larger than 1, we shall use the following lemma. 

Lemma 13.3, In the nearest-neighbor model on a_ = 7/d (d > 1), for 
each finite region A D (0, u}: 

( i [  C(x) 0 and u is connected toy  in 8_\ C(~ 1 ) 

>1 EA(I [ C(x) ~ 0]~-~ \dA(x)(u, y ) )  (6.13) 

with ~A=[min(p,(1 _p))]dqAI > 0 ,  where CA(x) is the cluster of sites 
connected to x in I_\A. 

Proof. Let the events E, F, and G be defined as follows: 
E: C(x)~O and u is connected t o y  in L\C~~ (in which case 

the bond (0, u ) is pivotal for the connection of x with y). 
F: C(x) ~ 0 and u is connected to y in q_\ CA(x); 
G: C(x) n A v~ 0, C(y) r A ~: 0 and CA(x) n CA(y) ---- O. 

Clearly G ~ E, F. Thus 

Prob(G) 1> Prob(F) and Prob(E) = Prob(G)Prob(E[G) (6.14) 

where the last factor is a conditional probability. 
The event G depends on only those bonds which do not lie ~enti~ely in 

A. It is easy to see that (in d > 1 dimensions) for each configuration of 
bonds in this set which occurs in G, there is some configuration of the 
complementary set of the nearest-neighbor bonds of A with which ~ e  event 
E occurs. Therefore 

Prob(E [ G)/> [min(p,  (1 - p))]gF~I = eA (6.15) 

and hence, by (6.14), 

Prob(E) i> eAProb(F) (6.16) 

which is equivalent to (6.13). �9 
Proposition 6.1 will now be proven by the argument of Lemma 6.1, 

combined with (6.13). 

t:'roor ot Proposition 6.1. It clearly suffices to prove (6.2) for the 
range p ~ (pJ2, p~). We know of course that Pc < 1--however, more 
generally, that is also a necessary condition for (6.1). 

By (6.4), (6.5), and (6.13), 

dx(p____)) >>- eA E (I[ C(x) ~O]~Q_\d'(x)(u, Y)) (6.17) 
dP u,x,y ~Zd= 

lul=l 

In applying the bound (6.6) to (6.17) we may now restrict the summation 
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over z to fu\A. Using (6.8), and summing, as in the proof of Lemma 6.1, 
one gets 

dX(p------~)>~cA2dx2[ l - s u p d p  t,l=] ,,..z ~ "c(O'w)'r(w'z)'c(z'u) t (6.18) 

z ~ L \ A  

with %(p)  i> [min(pc/2 , (1  - pc))]alAI--uniformly in p E [p J 2 ,  Pc). [2d 
plays in (6.18) the role of dK(B)/dfi.] 

Since V(pc) < ~ ,  there is some finite A for which 

"r(O,w)~(w,z)'r(z,u) <~ 1/2 (6.19) 
W,Z 

z ~ [ \ A  

for each u with lu] = 1. With this choice of A one gets (6.2) (after dividing 
(6.18) by X 2) with 6 - 2&A/2. �9 

It is clear from the argument that Lemma 6.3 and thus Proposition 6.1 
can be extended to more general systems. 

7. INEQUALIT IES FOR SITE PERCOLATION 

7.1. Notation 

In this section we present the analogs for site percolation of the results 
derived and discussed in the previous sections for bond percolation models. 
Since the proofs are essentially the same, we only sketch them with 
emphasis on the changes. Those are primarily in the definitions of the 
relevant self-determined sets. 

In an independent site percolation model on a lattice ~_ the sites in Q_ 
are independently occupied, with probability p, or vacant, with probability 
1 - p. For each site x E U_ there is an a priori specified collection, N(x) C D_, 
of "neighbors." In standard models R_ = ~a, and x, y E 2_ d are neighbors if 
Jx -yl  = 1. The discussion is confined here to models in which the relation 
y E N(x) ("x  is a neighbor of y" )  is symmetric. However, this property is 
not an essential requirement for our methods, which can also be adapted 
for "oriented percolation." 

It will also be assumed that the following quantity is finite 

def 
N =  supca rd (N(x) )  < ao (7.1) 

x ~ [  

We say that x and y are connected (resp. connected in A c a_), for a 
specified configuration of the occupation variables, if there is a sequence of 
neighboring sites z I ~ -  X ,  Z 2 . . . . .  Z k =y(z i+  1 ~ N(zi)) all of which are 
occupied (and, respectively, in A). The set {x~ . . . . .  xn} is said to be 



138 Aizenman and Newman 

connected (or connected in A) if each pair x i, xj is connected (resp. 
connected in A). 

We define C(x), the cluster of x, and J~(x) ,  the "augmented" cluster 
of x, by 

C(x)  = ( y ~ L I x a n d y  are connected) 
(7.2) 

z e N(x) 

Thus _zV(x) is the connected cluster of x in the configuration obtained by 
setting x as occupied. The connectivity functions associated with these 
notions are 

r (x  1 . . . .  , xn) = P r o b ( ( X l , . . . ,  x~} is connected) = r ( { x , , . . . ,  xn} ) 

(7.3) 

o(x ,  . . . . .  xn) = Prob(x 2 . . . . .  x, ~ -Za(X1)) = p - l ' r ( X l , . . .  , Xn) 

Notice that o, as well as r, are symmetric in their arguments. CA(X), 
% ({X l . . . .  , X~}), etc. are defined similarly by the connections in A. 

The expected sizes for the clusters, and augmented clusters, are 

<lC(x)l>= 
y ~a_ (7.4) 

([J(x)[)-- o(x,y)=p-!<lC(x)l> 

We denote 

X = sup( IC(x) [ )  
x (7.5) 

= sup ( I J ( x ) l )  = p -1  x 

and define the critical density by 

Pc = sup (p  c [ 0 ,  1] IX(p) < oo} (7.6) 

S ( x )  and ~ were introduced here since, as will be seen, they offer 
closer analogies than C(x) and X to the bond percolation clusters. 

A self-determined set for site percolation is a random subset S of [_ 
such that for each nonrandom A C L the event (S  c A } (and hence also 
S = A) is determined entirely by the occupat ion/vacancy of sites in A. 
Note that C(x) is not a self-determined set, but is closure 

C(x )  ~f  ( x )  u C(x)  U(yc~C(x)N(Y))  

is a self-determined set. 



Tree Graph Inequalities 139 

7.2. Bethe Lattice Bounds 

For site percolation on a Bethe lattice with the coordination number 
(i.e., number of neighbors of each site) M, one gets 

1 + p d_ef2~? (p) (7.7) 

which is analogous to (2.18). 
By the argument which led to Proposition 2.1 we have its following 

standard analog. 

In a site percolation model, with N < oe [N de- Proposition 7.1. 
fined in (7.1)], 

and, in particular 

~(p) ~ ~ L  (p) (7.8) 

Pc >~ N -  ~ (7.9) 

For the standard model on 2d, N may be replaced in (7.8), (7.9) by 
N - l = 2 d - 1 .  

7.3. A Lower Bound for y 

Proposition 7.2. In any homogeneous site percolation model 

PPc (7.10) 
x ( p )  ~> Ipc - e l  + 

In particular, the critical exponent y, defined by the analog of (2.14), 
satisfies 

V/> 1 (7. l l )  

The proof is a direct adaptation of the proof of Proposition 3.1. By 
applying Russo's lemma to site percolation we have (for infinite systems 
only formally) 

d ~-(0,x) = ~ Prob(y  is pivotal for the connection of x with 0) (7.12) 
d/p y~L 

Let S = C0_\{ y} (0). Then ,,~ is a self-determined set, and (for y v a 0) 

Prob(y  is pivotal for the connection of x with 0) 

= Prob(  y and SL,s(y)  x) 

< o(0, y)o(y, x) = -~ "r(O, y)'r(y, x) (7.13) 

(by conditioning on S). 
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Substituting (7.13) in (7.12) and summing over x we get 

dx < 1 X2 (7.14) 

and hence the following analog of (3.3): 

d x - l  r d l 

The arguments used in the proof of Proposition 3.1, show how to 
extract from this bound, whose derivation for infinite systems is only 
formal, an actual proof of Proposition 7.2. 

7.4. Inequalities for the Connectivity Functions 

The following results hold for general, i.e., not necessarily homoge- 
neous, site percolation models. 

Proposition 7.3. For any V = (x[ . . . . .  xn} c 0_ and A c k, 

o(V)-oa_\A(V ) <<. 2 E o (WU { y ) ) o ( ( V \ W ) U  {y))  (7.16) 
y E A  x ] E W c  V 

tWl<tVl 

One can prove (7.16) by a direct adaptation of the proof of Proposition 
4.2. The main difference is that the condition in (4.1l), that y is connected 
to S by an occupied bond, is replaced by the condition that the site y is 
occupied and N(y) N S v ~ O. It is convenient to formulate the proof for the 
functions r and only at the end absorb the extra factor p by a change to o. 

By the argument used in the proof of Lemma 4.1, (7.16) has the 
following implication. 

Lemma 7.1. 

o({x, . . . .  , x,))  ~ E  E ~ ( x , y ) o ( W  U {y}) 

• o(({x 2 . . . .  , x , } \ W )  u (y})  (7.17) 

Let us now denote, for A C Q_, 

6 A (x, y) = Prob(x andy are connected by a path of 

occupied, neighboring, sites which avoids 

A, except possibly at one end point (x ory)) (7.18) 

The following bound is the analog of the Simon-Lieb-type inequality of 



Tree Graph Inequalities 141 

Proposition 5.2. Its proof requires only a minor modification, like the one 
mentioned above. 

Proposition 7.4. For each x, z ~ 1_ and A c 1_ 

o(x,z) - Ol_\A(x,z ) ~ ~'~ OA(x, y)o(y,z)  (7.19) 
yEA 

7.5. Tree Diagram Bounds 

Iterating Lemma 7.1 we obtain the following tree diagram bounds for 
site percolation. 

Proposition 7.5. The inequality (4.6), with ~" replaced by o in both 
the left-hand side and the definition of T (4.3), is valid also for general 
independent site percolation models. In particular, 

O(Xl,Xz,X3) < ~ o(x,,  y)o(x2, y)o(x3, y ) (7.20) 
y 6 t  

7.6. Exponential Decay 

The above result implies that the bounds on the cluster size distribution, 
of Section 5.1, hold for site percolation as well, provided one replaces there 
]C(x)l by ]S(x)[ .  In particular, we get 

Proposit ion 7.6. If in an independent site percolation model 
X(= PX) is finite, then for every x E l_ and k >/~2 

Prob(IC(x)l /> k) -<< Prob([J (x) l  /> k) ~< (e/k)l/Ze -k/~2y~2) (7.21) 

Similarly, the results of Section 5.3 on the exponential decay of the 
two-point function apply also to site percolation--with a and ~ replacing ~" 
and X, and the set of bonds used in the definition of O(x, y) defined as 

2. = {b = {x ,y ) lY  ~ U(x)) 

With the norm tlx[I defined by (5.18) we have the following bound. 

Proposition 7.7. In any independent site percolation model, with 

~-(0,x) =po(0 ,x )  < p(1 -2- ')/Ixll  < pe -eflxll/x (7.22) 

The proof is by the argument of Proposition 5.3. That result required 
only the Simon-Lieb-type inequality of Proposition 5.2-for which a perfect 
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site percolation analog is found in Proposition 7.4, and Lemma 5.1. The 
FKG argument used in (5.25) for the proof of Lemma 5.1 applies also to 
the function o, as can be seen by employing the asymmetric expression 
of (7.3). 

7.7. The V Criterion for the Upper Critical Dimension 

We complete this section by noting that the site version of the 
Proposition 6.1 (= 3.2) is also valid. The proof proceeds as the proof of 
Proposition 6.1, with (6.4) and (6.5) replaced by formulas like those seen in 
(7.12) and (7.13). 
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